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ABSTRACT

We discuss the formation of secondary synchronized clusters, that is, small clusters of synchronized oscillators besides the main cluster, in
second-order oscillator networks and the role of inertia in this process. Such secondary synchronized clusters give rise to non-stationary
states such as oscillatory and standing wave states. After describing the formation of such clusters through numerical simulations, we use a
time-periodic mean field ansatz to obtain a qualitative understanding of the formation of non-stationary states. Finally, the effect of inertia
in the formation of secondary synchronized clusters is analyzed through a minimal model. The analysis shows that the effect of the main
synchronized cluster on the other oscillators is weakened by inertias, thus leading to secondary synchronized clusters during the transition to
synchronization.
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The synchronization process in oscillator networks, such as in the

Kuramoto model, is typically driven by the formation of a large

synchronized cluster that gradually absorbs more oscillators. This

process can be disrupted by the formation of smaller synchro-

nized clusters that compete with the main one. Such smaller

clusters lead to non-stationary states where the order parame-

ter varies periodically in time in contrast to coherent stationary

states where it is constant. In this paper, we consider oscillators

with inertia and we study the formation of smaller synchronized

clusters. We find that inertia plays a crucial role in the formation

of such clusters and the increase of inertia leads to a strength-

ening of the secondary clusters at the expense of the main clus-

ter. We use numerical experiments, a theoretical analysis of the

mean-field equations, and a simplified model to explain different

aspects of the formation of secondary synchronized clusters and

non-stationary states.

I. INTRODUCTION

Synchronization of coupled dynamical units is a prevalent phe-
nomenon in nature (Acebrón et al., 2005 and Arenas et al., 2008)
and many mathematical models have been used in its study. Among
them, the Kuramoto model (Kuramoto, 1975; 1984; Kuramoto and
Nishikawa, 1987; and Rodrigues et al., 2016) is one of the most popu-
lar and successful models for the study of synchronization and other
collective phenomena.

Second-order Kuramoto oscillators where frequency adapta-
tions (inertias) are added to the Kuramoto oscillators were first
proposed in Ermentrout (1991) to describe the dynamics of three
tropical Asian firefly species. Since then, this model has found sev-
eral applications such as Josephson junction arrays (Levi et al., 1978;
Watanabe and Strogatz, 1994; and Trees et al., 2005), goods markets
(Ikeda et al., 2012), and dendritic neurons (Sakyte and Ragulskis,
2011). One particular field of study where Kuramoto oscillators
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with inertia are very relevant is power grids. There is an enor-
mous amount of literature that explore different aspects of this topic,
often combined with the issue of stability and control. We indica-
tively mention the works (Filatrella et al., 2008; Lozano et al., 2012;
Witthaut and Timme, 2012; Rohden et al., 2012; 2014; 2017; Menck
et al., 2013; Dörfler et al., 2013; Kim et al., 2015; Hellmann et al.,
2016; Grzybowski et al., 2016; Maïzi et al., 2016; Manik et al., 2017;
Pinto and Saa, 2016; Witthaut et al., 2016; Gambuzza et al., 2017;
and Tumash et al., 2018; 2019).

There are several numerical and analytical methods for ana-
lyzing the collective behavior of second-order Kuramoto oscillators.
Focusing on stationary states, the self-consistent method is one of
the most prominent analytical methods for the study of network
dynamics, due to its great success for standard Kuramoto oscillators
(i.e., without inertia). The self-consistent method was first applied
to analyze the stationary states in the model of Kuramoto oscillators
with inertias by Tanaka et al. (1997a). The self-consistent method in
Tanaka et al. (1997a) produces accurate results for stationary states
away from the zero value of the order parameter, that is, away from
the incoherent state. An improvement of the self-consistent method,
which extends the predictive power of the method also near incoher-
ent states, was developed in Gao and Efstathiou (2018). This allows
the determination of the critical coupling strength for the bifur-
cation of coherent stationary states from the incoherent state. The
self-consistent method leads to quantitative predictions about phe-
nomena such as hysteresis (Olmi et al., 2014) and different types
of transition from incoherence to coherence (Tanaka et al., 1997a;
1997b; Acebrón et al., 2000; and Barre and Métivier, 2016).

Beyond the self-consistent method, other analytical approaches
have been proposed for the study of Kuramoto oscillators with iner-
tia. For example, Barre and Métivier (2016) determine the linear
stability of the incoherent state using an unstable manifold expan-
sion. The same approach has been used in the study of Kuramoto
oscillators with inertia and delayed coupling in Métivier et al. (2020).
Two different analytical methods that also apply to the case of noisy
oscillators have been proposed in Munyaev et al. (2020).

Other works consider special arrangements that can lead to a
radical simplification of the dynamics. For example, Belykh et al.
(2015) consider oscillators connected in a star configuration, while
Brister et al. (2020) consider three clusters of identical oscillators.
The case of identical oscillators is also studied in Kruk et al. (2020)
in the context of the appearance of solitary states. A more general
case is considered in Medvedev and Mizuhara (2021) focusing on
the synchronization of oscillators on Erdös–Rényi graphs, where the
natural frequencies are drawn from a bimodal distribution.

As several other earlier works have demonstrated, Kuramoto
oscillators with inertia can demonstrate much more complicated
dynamics than only stationary states. Two such examples of non-
stationary states are oscillatory states and standing waves (Tanaka
et al., 1997b; Olmi et al., 2014; and Olmi and Torcini, 2016). In oscil-
latory states, the coherence r, that is, the modulus of the complex
order parameter in Eq. (3), does not attain a fixed value but oscillates
around a mean value. In the case of standing waves, the coher-
ence also oscillates but the distinguishing feature is that its value
moves periodically between (almost) zero and a maximum value
(see, for example, Fig. 11). Such non-stationary states have been
found in systems with unimodal distributions of natural frequencies

(Tanaka et al., 1997b) but also with bimodal distributions (Olmi and
Torcini, 2016), and in complex networks (Olmi et al., 2014). Olmi
et al. (2014) observed that oscillatory states are associated with the
appearance, besides the main cluster, of additional clusters of fre-
quency synchronized oscillators called drifting clusters in Olmi et al.
(2014) and secondary synchronized clusters in this work.

Non-oscillatory states also appear in first-order Kuramoto
oscillators with non-unimodal natural frequency distributions. For
this case, Engelbrecht and Mirollo (2012) showed that the dynamics
of a single oscillator in a periodic mean field gives rise to a circle map
whose resonance tongues correspond to secondary synchronized
clusters, and they proceeded to thoroughly analyze the properties of
this circle map. Therefore, they established that a periodic mean field
is compatible with the existence of secondary synchronized clusters.

In the context of second-order oscillators, not much is known
about the relation between secondary synchronized clusters and
non-stationary states. How are secondary synchronized clusters
formed? Are they compatible with the periodic behavior of the
coherence r in non-stationary states such as oscillatory states and
standing waves? What is the role of inertia in the formation of sec-
ondary synchronized clusters? Our main focus in this paper is to
answer these questions: understand the formation of secondary syn-
chronized clusters, the role of inertia in this process, and the connec-
tion between secondary synchronized clusters and non-stationary
states.

This paper is organized as follows. In Sec. II, we define the
studied model of coupled second-order oscillators and we discuss
the phenomenology of secondary synchronized clusters and their
relation to oscillatory states through numerical simulations of the
dynamics, focusing on the effect of inertia. In Sec. III, we consider
the dynamics of a single oscillator in a periodically varying mean
field and we show that such mean fields are inextricably related
to secondary synchronized clusters along the lines of the approach
in Engelbrecht and Mirollo (2012). Through the analysis of the
dynamics, we give a qualitative explanation of why oscillatory states
appear only in the forward process for sufficiently large inertias.
Moreover, we discuss the validity of assuming a time-periodic mean
field from the point of view of self-consistency. In Sec. IV, we use
a minimal model of three oscillators to qualitatively analyze the
role of inertia in the formation process of secondary synchronized
clusters. We conclude with a discussion of the results in Sec. V.
Additional computations and discussion of secondary synchronized
clusters for bimodal natural frequency distributions are given in the
Appendix.

II. MODEL AND PHENOMENOLOGY

In this paper, we consider Kuramoto oscillators with inertias.
The model consists of a finite number of oscillators indexed by
i = 1, . . . , N. The state of each oscillator is characterized by a phase
θi ∈ R/2πZ, that is, θi ∈ [0, 2π] with 0 ≡ 2π , and a correspond-
ing angular velocity ωi = θ̇i ∈ R. In terms of these variables, the
dynamics is given for each i = 1, . . . , N by

θ̇i = ωi, (1a)
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mω̇i + Dωi = �i +
K

N

N∑

j=1

sin(θj − θi), (1b)

which can be also written as the second-order equation

mθ̈i + Dθ̇i = �i +
K

N

N∑

j=1

sin(θj − θi). (1c)

In these equations, m is the inertia, D is the damping coefficient,
and K is the coupling strength. The quantities �i can be thought
of as torques being applied to the oscillators (rotors). When K = 0,
then the ith oscillator’s angular velocity ωi as t → ∞ becomes �i/D
and for this reason, with some abuse of language, we will call �i the
“natural frequency” of the ith oscillator. The values �i are randomly
chosen from a distribution g(�). Different values of the parame-
ters m, D, K, and different distributions g(�) can lead to different
collective dynamics and synchronization scenarios.

In this section, we present the results of numerical simula-
tions that demonstrate the effect of inertia on the appearance of
secondary synchronized clusters. In particular, our aim is to demon-
strate that increasing the inertia favors the formation of secondary
synchronized clusters rather than give a complete description of the
transition to synchronization. For a complete numerical study of
the synchronization process in such systems, we refer to Olmi et al.
(2014) and Olmi and Torcini (2016).

We study systems with N = 104 oscillators and with different
values of inertia m fixing the value of the damping coefficient to
D = 1. Note here that a time rescaling reveals that the effective
parameter is the reduced mass µ = m/D2. However, we choose
to keep the two parameters m and D. The natural frequencies of
oscillators are chosen randomly from a unimodal distribution g(�)

= G(�; 0, 1), where G(�; µ, σ) is the Gaussian distribution

G(�; µ, σ) =
1

√
2πσ 2

exp

(
−

(� − µ)2

2σ 2

)
. (2)

A similar analysis for bimodal distributions is presented in the
Appendix.

The collective state of the oscillators is described by the (com-
plex) order parameter

r eiφ =
1

N

N∑

j=1

eiθj . (3)

The modulus r of the order parameter measures the phase coher-
ence, and φ represents a collective phase. If all the oscillators
move in a single tight cluster, we have r u 1, with r = 1 corre-
sponding to complete phase synchrony. On the contrary, if the
oscillators move incoherently, scattered around the circle, we have
r u 0.

For each inertia value and natural frequency distribution, we
consider a forward and a backward process (Tanaka et al., 1997a). In
the forward process, the initial state of the oscillators is constructed
for K = 0.01 by drawing the phases θi from the uniform distribution
in [0, 2π] and the frequencies ωi = θ̇i from the uniform distribution
in [0, 1]. Then, the system is evolved using a Runge–Kutta fourth-
order method with fixed step-size δt = 0.01 for time T = 1500. The

transient part of the evolution from t = 0 to t = 1000 is discarded
and only results obtained from the time interval between t = 1000
and t = 1500 are reported. The choice of initial phases and frequen-
cies for K = 0.01 leads to an incoherent state. After T = 1500, the
value of K is increased by δK = 0.01 and this procedure is repeated
until K = 10 with the initial state for K + δK being the final state
for K.

In the backward process, the initial state of the oscillators is
constructed for K = 10 by drawing the phases θi from a narrow uni-
form distribution supported on [0, 2π/100] and the frequencies ωi

from the uniform distribution supported on [0, 1]. In this case, the
choice of initial phases and frequencies leads to a coherent state with
r u 1 after integrating the system for a sufficiently long time. Then,
we follow the same procedure as in the forward process but, after
integrating the system for T = 1500, the value of K is decreased by
δK = 0.01 until K = 0.01.

To provide a more refined description of collective states (com-
pared to the global description provided by the order parameter),
we use the mean frequency 〈ωj〉 = 〈θ̇j〉 of each oscillator, com-
puted over the interval from t = 1000 to t = 1500 for each value
of K. It is worth pointing out here that for each oscillator, we have
defined three different frequencies: the natural frequency �j, the

(instantaneous) frequency ωj = θ̇j, and the mean frequency 〈ωj〉.
Two oscillators are synchronized (or frequency locked) if they

have the same mean frequency. A group of oscillators with the same
value of mean frequency forms a synchronized cluster.

We compute the forward and backward process for three values
of inertia: m = 2, m = 5, and m = 10. The results of the simulations
are reported in Fig. 1.

We observe that for m = 2 in the forward process, we have a
standard pathway to a coherent steady state in the sense that a main
synchronized cluster is formed and gradually, as K increases, nearby
oscillators are absorbed by the main cluster. Here, the value of the
coherence r increases discontinuously at K u 3.6 [see Fig. 1(a)].
Moreover, Fig. 1(a) shows that throughout the forward process for
each value of K the coherence is approximately constant. In the clus-
tering diagram [Fig. 1(b)], we depict the mean frequency 〈ωj〉 of the
oscillators as K increases. We observe that initially a synchronized
cluster is abruptly formed at K u 3.6 around the peak of the dis-
tribution. Subsequently, nearby oscillators are gradually absorbed
by the synchronized cluster leading to a more coherent state with
larger r.

The dynamics of the order parameter for the system with
K = 4.8 is shown in Figs. 2(a)–2(c). In Fig. 2(a), we observe that the
evolution of the complex order parameter r eiφ inside the unit disk
on the complex plane takes place along a curve of constant radius
r. This is also visible in Fig. 2(b). In Fig. 2(c), we depict the mean
frequency 〈ωj〉 as a function of the natural frequency �j. Note the
appearance of a large main synchronized cluster with 〈ω〉 = 0 and
the absence of any secondary synchronized clusters, in agreement
with Fig. 1(b).

When the inertia is increased to m = 5, we no longer observe
the same mechanism toward synchronization. The order parame-
ter increases discontinuously at K u 4.2. However, in the resulting
states, the value of r does not remain (approximately) constant
but oscillates around a mean value. In Fig. 1(c), the mean value is
depicted by the blue thick line while the width of the oscillation
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FIG. 1. Results of the numerical simulations for the forward and backward processes for N = 10 000 oscillators and Gaussian natural frequency distribution g1(�). The
inertias considered in these pictures are m = 2 (top row), m = 5 (middle row), and m = 10 (bottom row). Left side: evolution of the coherence in the forward and backward
processes described in the text. For each value of K, the mean coherence for the time interval from t = 1000 to t = 1500 is drawn with a thick blue curve for the forward
process and a thick red curve for the backward process. The range of value of the coherence for each K is represented by the light blue band for the forward process and
the light red band for the backward process. Right side: clustering diagrams show the mean frequency 〈ωj〉 for the time interval from t = 1000 to t = 1500 as K increases
in the forward process. The successive merging of lines indicates the formation of synchronized clusters.

is represented by the light blue band around the mean value. In
previous studies, this state has been called secondary synchroniza-
tion (Tanaka et al., 1997b) or oscillatory state (Olmi et al., 2014 and
Olmi and Torcini, 2016). Such an oscillatory state obtained from
this forward process at K = 4.8 is depicted in Figs. 2(d)–2(f). In
Fig. 2(d), we observe that the complex order parameter oscillates in
the radial direction [see also Fig. 2(e)], while the collective phase φ

also changes.
In the corresponding clustering diagram in Fig. 1(d), we

observe that many smaller synchronized clusters are formed due
to inertia alongside the main synchronized cluster that originates
from the peak of the distribution. The clusters for K = 4.8 are

depicted in Fig. 2(f), where we observe that the system has a main
synchronized cluster with 〈ω〉 = 0, two relatively large secondary
synchronized clusters symmetrically positioned with respect to 0,
and even smaller synchronized clusters further away. As K increases,
the main synchronized cluster becomes more prominent with oscil-
lators from neighboring clusters gradually feeding into it. This leads
to an increase of the coherence and a suppression of the oscillatory
behavior.

The existence of the secondary synchronized clusters also
explains the oscillatory behavior of the complex order parameter.
To simplify the discussion, assume that a0N oscillators are fixed
at θ = 0, 1

2
a1N oscillators rotate as θi = �r

1t and 1
2
a1N oscillators
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FIG. 2. Two states obtained from the forward process for the unimodal distribution g1(�). At the leftmost panel, we depict the evolution of the order parameter reiφ in the
unit disk for the time interval from t = 1000 to t = 1500. In the middle panel, we depict the time-dependence of r from t = 1000 to t = 1100 sampled every 1t = 0.1. The
rightmost panel shows the mean frequency 〈ωj〉 of the jth oscillator in the time interval from t = 1000 to t = 1500 as a function of the natural frequency �j . Top row: a
coherent steady state for m = 2 and K = 4.8; bottom row: an oscillatory state for m = 5 and K = 4.8.

rotate as θi = −�r
1t, with a0 + a1 = 1. Then, the complex order

parameter is

r eiφ = a0 +
a1

2

(
ei�r

1t + e−i�r
1t
)

= a0 + a1 cos �r
1t, (4)

which agrees with the definition of oscillatory states.
Further increasing the inertia to m = 10 makes the oscillatory

behavior even more pronounced and we observe that it persists for
all the range of K values that we have considered in our computa-
tions [see Fig. 1(e)], even though it is known that for sufficiently
large values of K the system will reach a stationary state (Olmi et al.,
2014). Moreover, we observe that the mean value of the coherence
remains almost constant for a large range of K, from K u 5.2 to
K u 9.8. In the clustering diagram in Fig. 1(f) we observe a com-
plex clustering process taking place from K u 4.4 to K u 5.2 before
the system settles to three large synchronized clusters. Note that in
all cases, the system will reach for sufficiently large K a stationary
(non-oscillatory) partially coherent state; however, we do not show
this transition for all simulations since we focus on the formation of
secondary synchronized clusters.

In summary, these numerical calculations demonstrate that
the main effect of inertia is to impede the formation of coherent
stationary states by inducing the formation of secondary synchro-
nized clusters. Note also that in the backward process, there are no
oscillatory states in any of the numerical simulations.

Similar to the calculations in this section for a unimodal natural
frequency distribution, we can further consider bimodal distribu-
tions. As we discuss in the Appendix, the role of inertia in this case
is also to support the formation of secondary synchronized clusters.

III. TIME-PERIODIC MEAN FIELD

The dynamics described by Eq. (1) can be written in mean
field form (Kuramoto, 1975), where each oscillator interacts with the
mean field through the order parameter z(t) = r(t) eiφ(t), as

θ̇j = ωj, (5a)

mω̇j + Dωj = �j + Kr(t) sin(φ(t) − θj). (5b)

Written in this form, the dynamical equations connect two levels
of description of the system—the macroscopic description given
by the order parameter z(t) to the microscopic description given
by the solutions (θj(t), ωj(t)) for individual oscillators j = 1, . . . , N.
The essence of the self-consistent method is the fact that for a pre-
scribed order parameter z(t), the obtained solutions (θj(t), ωj(t))
must satisfy

z(t) =
1

N

N∑

j=1

exp(iθj(t)), (6)
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that is, the prescribed order parameter should equal the order
parameter obtained by considering the solutions (θj(t), ωj(t)) for the
individual oscillators. Equation (6) can be viewed as connecting the
microscopic to the macroscopic description, that is, its role is the
reverse of the role of Eq. (5). If the solutions (θj(t), ωj(t)) of Eq. (5)
obtained with a prescribed z(t) satisfy Eq. (6), then we can conclude
that the prescribed z(t) corresponds to a state that can be realized in
the system. Such a state can be numerically observed if it is stable.

A. Dynamics in periodic mean field

Even though a self-consistent method for non-stationary states
does not exist, understanding the dynamics induced by Eq. (5) for a
prescribed oscillatory order parameter z(t) allows us to reach impor-
tant conclusions about the existence of secondary synchronized
clusters in the systems under study.

For first-order Kuramoto oscillators, that is, m = 0, this idea
was pursued by Engelbrecht and Mirollo (2012). In this case, the
mean field equation under the assumption of a periodically varying
order parameter gives rise to a time-dependent first-order equation
with periodically varying coefficients. The Poincaré map for such
an equation is a strictly increasing function of the phase θ , and,
therefore, it gives rise to a circle map lift. The resulting rotation
number is an increasing function of the natural frequency. The anal-
ysis of the rotation number shows the existence of synchronized
clusters which manifest as plateaus for the rotation number, cf. the
numerical results in Sec. II.

For the unimodal natural distribution, we can model the col-
lective phases as φ(t) = �rt, and the order parameter with the
ansatz

r(t) = r0 +
r1

2
ei�r

1t +
r1

2
e−i�r

1t = r0 + r1 cos(�r
1t). (7)

The ansatz in Eq. (7) gives r(t) as the sum of contributions from
a main synchronized cluster and drifting oscillators and two sym-
metric secondary synchronized clusters with frequencies ±�r

1, cf.
Eq. (4). Note that r1 = 0 corresponds to a stationary states. We fur-
ther discuss the validity of this ansatz in Sec. III C. Equation (7)
belongs to a more general form as

r(t) = r0(1 + εf(t)), (8)

with collective phase φ(t) = �rt + φ0 with a constant precession
rate �r. Here, f(t) is a T-periodic function, T = 2π/�r

1, with zero
average and normalized so that max |f(t)| = 1, while ε ≥ 0 measures
the relative size of the time-dependent term.

From Eq. (8), the dynamics of oscillators in Eq. (5) can be
written in a frame rotating together with φ(t) as

θ̇ = ω, (9a)

mω̇ + Dω = � − D�r − Kr0(1 + εf(t)) sin(θ), (9b)

where we have dropped the subscript j for individual oscillators.
We want to understand the dynamics of a single oscillator fol-

lowing Eq. (9) for ε close to 0, i.e., for near-stationary states. For a
given initial state (θ(0), ω(0)), we consider the corresponding solu-
tion (θ(t), ω(t)) of Eq. (9). Then, the time-T Poincaré map F̂ on R2

corresponding to Eq. (9) is defined by

F̂ : R
2 → R

2 : (θ(0), ω(0)) 7→ (θ(T), ω(T)). (10)

Since θ is a periodic coordinate, we can define the corresponding
Poincaré map F on the cylinder C = S × R by

F : C → C : (θ(0), ω(0)) 7→ (θ(T) mod 2π , ω(T)). (11)

The case ε = 0 in Eq. (9) corresponds to a steady state with
r(t) = r0. We recall here some basic facts about the dynamics in
this case—for more details, see Levi et al. (1978), Guckenheimer and
Holmes (2013), Strogatz (2014), and Gao and Efstathiou (2018). The
notation here follows (Gao and Efstathiou, 2018).

In the case ε = 0, Eq. (9) has two possible stable states. Let

a =
D

(Kr0m)1/2
, b =

D 1�

Kr0

,

where 1� = (�/D) − �r. Then, for b ≥ bL := 1, the only stable
state is a limit cycle L. The motion on L has the approximate period
given by

TL u
2π

1�
,

i.e., it corresponds to an approximate average frequency �L u 1�

on L. Note that a better estimate for �L, valid for small Kr0, is

�L u 1�

[
1 −

1

2

(Kr0)
2

(D 1�)2 + µ2(D 1�)4

]
,

where µ = m/D2 is the reduced mass [see Gao and Efstathiou
(2018)].

For b < bS(a), where

bS(a) u

{
1.2732 a − 0.3056 a3, 0 ≤ a ≤ 1.193,

1, a ≥ 1.193,
(12)

the only stable state is a fixed point (θ0, 0). When bS(a) < b < bL

:= 1 the system is bistable—the stable fixed point and stable limit
cycle co-exist. Several properties of second-order oscillators, such
as the discontinuous phase transitions to synchronization and the
corresponding hysteresis of steady states, are closely related to this
bistability.

To extend these results to the time-dependent system in Eq. (9)
with ε > 0, consider the extended phase space C × ST with coor-
dinates (θ , ω, t). Here, because of the periodic time-dependence of
Eq. (9) on t, the latter is viewed as a periodic variable in ST := R/TZ,
i.e., t ∈ [0, T] with 0 ≡ T. The stable fixed point (θ0, 0) becomes in
C × ST a stable limit cycle (θ0, 0, t), or equivalently a fixed point
(θ0, 0) of the Poincaré map F. Similarly, the stable limit cycle L
becomes in C × ST a stable limit torus L̂ = L × ST carrying quasi-
periodic motions with frequencies 2π/TL and 2π/T. The stable limit
torus L̂ manifests on the Poincaré section as an invariant curve L0 of
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F carrying a quasi-periodic circle map with rotation number

ρ0 =
T

TL

.

Recall here that the rotation number for an orbit of the
Poincaré map F̂ with initial state (θ(0), ω(0)) is

rot(F)(θ(0), ω(0)) := lim
n→∞

θ(nT) − θ(0)

2πn
= lim

n→∞

θn − θ0

2πn
,

where (θn, ωn) = F̂n(θ(0), ω(0)).
Both the stable fixed point (θ0, 0) and the stable invariant

curve L0 of F that exists for ε = 0 persist for sufficiently small
ε > 0. In particular, the fixed point (θ0, 0) of F persists as the fixed
point (θε , ωε) from the general theory of persistence of equilibria
(Guckenheimer and Holmes, 2013). Moreover, the invariant curve
L0 is a compact normally hyperbolic invariant manifold and thus
Fenichel’s theory (Hirsch et al., 1970 and Fenichel, 1971) and we
expect that for sufficiently small ε, it will persist as an invariant
curve Lε . Extending terminology from the case ε = 0, we will refer
to oscillators converging to the stable fixed point as locked and those
converging to the stable invariant curve as running, cf. Gao and
Efstathiou (2018). The restriction of the Poincaré map F on the
invariant curve Lε gives rise to a circle map with a rotation num-
ber ρε independent of the initial condition on the invariant curve
(Devaney, 2003). Note that the circle map on Lε may have fixed
points or higher order resonances.

Consider now an ensemble of oscillators characterized by dif-
ferent � while the other parameters determining the dynamics, that
is, m, D, K, r0, �r, ε and the T-periodic function f(t) are the same.
Then, the value of � determines whether the Poincaré map F for
Eq. (9) for sufficiently small ε has a fixed point, an invariant curve,
or both. Note here that for large ε, the Poincaré map F may also

have other stable features (fixed points, invariant curves, or chaotic
attractors).

Restricting our attention to the case of small ε if there
is only a (stable) fixed point (θε , ωε), then all initial states
(θ(0), ω(0)) will eventually converge to it and their rotation num-
ber will be rot(F)(θ(0), ω(0)) = 0. Similarly, if there is only a sta-
ble invariant curve Lε , then all orbits will have rotation number
rot(F)(θ(0), ω(0)) = ρε . In the bistable case, where both a fixed
point and an invariant curve co-exist, we will find some oscillators
with rotation number 0 and some oscillators with rotation number
ρε depending on their initial condition (θ(0), ω(0)), which deter-
mines if they converge to the fixed point or the invariant curve,
respectively. Therefore, a plot of rot(F) vs � for each oscillator will
consist of three regions: one where all oscillators are running and
have rotation number ρε (which however depends on �), one where
all oscillators are locked with rotation number 0, and the bistable
region where some oscillators have rotation number 0 and some
have rotation number ρε .

B. Formation of secondary synchronized clusters

In Sec. II, we observed that secondary synchronized clusters
appear only in the forward process and for sufficiently large iner-
tias. Based on the dynamics of a single oscillator in a periodic mean
field, we can now provide an explanation for this observation.

Figure 3 shows the rotation number of a single oscillator with
dynamics given by Eq. (9) in an oscillatory mean field of the form
r(t) = r0(1 + ε cos t) for different values of inertia, fixed r0, and
gradually increasing ε. The parameter 1� = (�/D) − �r ranges
from 1�min = −3 to 1�max = 3 with step 10−2. For each value
of 1�, we consider at least 10 randomly chosen initial conditions
(θ(0), ω(0)) chosen uniformly in [0, 2π] × [−6, 6]. For each ini-
tial condition, we numerically compute the rotation number by
integrating the dynamics from t = 0 to t = 2π × 1200 and then

FIG. 3. Rotation number rot(F) as a function of1� = (�/D) − �r for Eq. (9) with oscillatory r(t) = r0(1 + ε sin t). Top row: m = 2; bottom row: m = 5. The value of ε
increases from left to right taking the values ε = 0, 0.1, 0.25, 0.4. In all cases, D = 1, K = 4.5, and r0 = 0.6. Bistable regions are colored light gray, and multistable regions
(three or more stable features) are colored dark gray.
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numerically approximating the rotation number as

rot(F) u
1

2π × 1000
(θ(2π × 1200) − θ(2π × 200)).

In all computations, we have chosen D = 1, K = 4.5, and r0 = 0.6.
For m = 2, we observe in Fig. 3(a) that for ε = 0 we have,

depending on the value of 1�, a stable fixed point (points on
the plateau rot(F) = 0) or a stable invariant curve (points out-
side the plateau)—these co-exist in the light gray colored bistable
regions. For non-zero but small ε = 0.1, we observe in Fig. 3(b) that
the numerical results agree with the theoretical analysis based on
Fenichel’s theory. In particular, the fixed points and the invariant
curve persist. However, we also note that for a small range of values
of the parameter 1� the appearance of resonances at rot(F) = ±1
on the invariant curve and inside the bistable region. For even larger
values ε = 0.25 in Fig. 3(c) and ε = 0.4 in Fig. 3(d), the resonances
disappear.

For larger inertia m = 5, the dynamics of the system is very dif-
ferent. We observe in Figs. 3(e)–3(h) that as ε increases, the bistable
region remains prominent—at ε = 0.4, we also observe the appear-
ance of a multistable region. At the same time, as ε increases, the size
of the resonances also increases.

The crucial observation here is that with increased inertia, we
have larger plateaus in the graph of rot(F) vs � (corresponding to
synchronized clusters) and these plateaus appear inside the bistable
regions, as shown in Fig. 3. With a larger bistable region and corre-
sponding larger plateaus, the time-periodic mean field can excite a
larger oscillation of the order parameter. Taking the time-periodic
mean field as an oscillating perturbation around stationary states, a
sufficient large excited oscillation of the order parameter means the
instability of such stationary state and the formation of an oscillatory
state.

This observation explains why oscillatory states do not appear
for small inertias or in the backward process. For oscillatory states
to appear, it is necessary to have oscillators that will belong to one of
the (secondary) plateaus besides the main plateau at rot(F) = 0 since
the latter corresponds to fixed points and contributes to the coher-
ent stationary state. Since for small inertias these secondary plateaus
are small, we do not expect that they will lead to the formation of
oscillatory states. For large inertias, the plateaus increase in size but
they are located inside the bistable region. This implies that they are
accessible to oscillators in the forward process but inaccessible to
oscillators in the backward process.

C. Initial states and self-consistency

For second-order Kuramoto oscillators, i.e., with m > 0, the
initial state of the oscillators may lead to different final states after a
transient time, due to bi-stability. For example, the numerical results
in Sec. II demonstrate that, for sufficiently large m, one can find sec-
ondary synchronized clusters in the forward process but not in the
backward process. The only difference between these two processes
for a given coupling strength K is the initial state.

To explore the relation between initial states and secondary
synchronized clusters, we fix K and we consider initial states param-
eterized by λ ∈ [0, 1], where the initial phases θj(0) are randomly
drawn from the uniform distribution with support in [−λπ , λπ],

and the initial frequencies ωj(0) are randomly drawn from the uni-
form distribution with support in [−λ, λ]. When λ = 0, the initial
state is a fully phase synchronized state with r(0) = 1. Such a state is
always transient and evolves to a different final state. When λ = 1,
the initial state is an incoherent state with r(0) = 0. In this case, the
system can stay in the incoherent state if the state is stable and will
evolve to a different final state if the incoherent state is unstable.

For the numerical simulations, we fix the parameters m = 5,
D = 1, and K = 5. For each initial state, we let the system evolve for
time t = 4500 and then fit the numerically computed coherence r(t)
from t = 4500 to t = 5000 to the ansatz r(t) = r0 + r1 cos(�r

1t) in
Eq. (7) to obtain the values of the parameters r0, r1, �

r
1.

The results of the fitting for different initial states are shown
in Fig. 4, where λ takes values from 0 to 1 with step 0.05, and for
each λ, we have considered 103 random initial states. As an exam-
ple, Fig. 4(a) shows the fitted r(t) with r0 = 0.66, r1 = 0.14, and
�r

1 = 1.12 for λ = 1. Figures 4(b) and 4(c) show the fitted param-
eters r0, r1, and �r

1 for all λ and all initial states. We observe a clear
separation in two clusters. One cluster has r1 < 0.015 and corre-
sponds to (near-)stationary states. The second cluster has r1 > 0.1
and corresponds to oscillatory states, that is, states with prominent
secondary synchronized clusters. Note that due to the random char-
acter of the initial states, it is possible that different initial states for
the same λ give final states in different clusters. This is shown in
Figs. 4(d)–4(f) where the fitted parameters for each initial state are
shown as a function of λ. In particular, in Fig. 4(e), we observe that
oscillatory states appear for λ ≥ 0.9.

Partial synchronization states with a constant order parameter
r(t) u r0 (in the cluster with r1 < 0.015), can be analyzed using the
self-consistent method.

Figures 4(b) and 4(c) show that for oscillatory states with sec-
ondary synchronized clusters, there is a linear relation between the
three parameters r0, r1, and �r

1. We observe that as r1 increases,
r0 and �r

1 both linearly decrease. This implies that the parame-
ters for the observed oscillatory states satisfy specific constraints.
Such constraints can be uncovered through a detailed analysis of
the dynamics of Eq. (9) with prescribed order parameter in Eq. (7).
Combined with the self-consistent analysis, this could lead to the
theoretical prediction of possible oscillatory states and the values
of r0, r1, �r

1 as functions of K. Due to the extensive scope of this
analysis, we do not further pursue this line of research here.

A related question is whether the order parameter obtained
by considering the dynamics of individual oscillators in a pre-
scribed mean field r(t) = r0 + r1 cos(�r

1t) is consistent with the
given mean field. In particular, we consider the mean field r∗(t)
= 0.66 + 0.14 cos(1.12 t) given by the fitting for λ = 1 shown in
Fig. 4(a) for m = 5, D = 1, and K = 5. In Fig. 5, we show the average
frequency 〈ω〉 of oscillators following the dynamics in Eq. (9) with
the prescribed r∗(t). The natural frequency � takes values from −4
to 4 with step 0.1. For each value of �, N = 1000 oscillators are con-
sidered with randomly chosen initial states. In Fig. 5(a), we observe
the existence of the main synchronized cluster (A2) correspond-
ing to fixed points (θε , ωε) of the Poincaré map, and the secondary
synchronized clusters (A1) corresponding to fixed points of the cir-
cle map induced on the invariant curve Lε , cf. the discussion in
Sec. III A. Moreover, we observe the existence of drifting oscillators
that correspond to non-resonant dynamics of the circle map on Lε .
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FIG. 4. (a) The order parameter r(t) and the fit from Eq. (7) for one initial state with λ = 1. The inset shows the error of the fitting. (b) Fitted values r0 vs r1; the inset
shows oscillatory states. (c) Fitted values �r

1 vs r1; the inset shows oscillatory states. (d)–(f) Values of fitted parameters r0, r1, �
r
1, respectively, vs λ. In all simulations,

N = 103, m = 5, D = 1, and K = 5. The natural frequencies�j are drawn from the Gaussian distribution g1(�). The initial states are drawn from θj(0) ∈ [−λπ , λπ ] and
ωj(0) ∈ [−λ, λ], where λ ∈ [0, 1] with a step 0.05. Simulation parameters are dt = 0.01 with t ∈ [0, 5000]. Equation (7) is fitted to r(t) for t ∈ [4500, 5000].

In Fig. 5(b), we show the basins of attraction for the states A1

(gray) and A2 (black) for � = 1.2 [vertical dashed line in Fig. 5(a)].
The complicated shapes of the two basins highlight the difficulty of
the detailed analysis of the dynamics produced by Eq. (9) and further
demonstrate the bistability of the system.

Finally, in Fig. 5(c), we consider N = 103 oscillators with nat-
ural frequency � drawn from the distribution g1(�) and random

initial states with θ(0) ∈ [−π , π] and ω(0) ∈ [−4, 4]. We integrate
the oscillators from t = 0 to t = 1000 in the mean field r∗(t) and
use the obtained phases θj(t) to compute the order parameter r(t)
= 1/N

∑
j exp(iθj(t)). We fit the ansatz r0 + r1 cos(�r

1t) to the com-

puted order parameter r(t) from t = 500 to t = 1000, obtaining the
fitted values for r0, r1, and �r

1. We repeat the process 105 times
with different randomly chosen initial conditions. In Fig. 5(c), we

FIG. 5. Oscillator dynamics in the prescribed mean field r∗(t) = 0.66 + 0.14 cos(1.12 t). (a) Mean frequencies 〈ω〉 of oscillators of Eq. (7), with � ∈ [−4, 4] with a step
0.1. For each value of �, N = 1000 oscillators are considered whose initial states are chosen randomly from θ(0) ∈ [−π ,π ] and ω(0) ∈ [−4, 4]. (b) Basins of attraction
for the state A1 (gray) and A2 (black) obtained by integrating N = 105 initial states. (c) The region of possible output states (gray points) and the driven field (red asterisk).
The region of possible output states is obtained by integrating N = 105 randomly chosen initial states. The parameters calculated in (c) is r0 ∈ [0.5, 0.8] with step 0.03, and
r1 ∈ [0.08, 0.18] with step 0.01. Simulation parameters are m = 5, D = 1, K = 5, and dt = 0.01 with t ∈ [0, 1000]. All fittings are for the time period t ∈ [500, 1000].
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show the obtained values of r0 and r1. We observe that these cover
a region in the (r1, r0) plane and the mean field r∗(t) lies inside this
region. This implies that there are initial conditions that lead to the
prescribed mean field r∗(t), that is, the latter is consistent with the
dynamics of the system. This confirms the validity of modeling the
oscillatory mean field r(t) using the ansatz r0 + r1 cos(�r

1t).

IV. MINIMAL MODEL FOR SECONDARY

SYNCHRONIZED CLUSTERS

As a complement to the mean field based analysis in Sec. III,
this section is devoted to the dynamics of a few oscillators as a sim-
ple model that demonstrates the role of inertia in the formation of
secondary synchronized clusters.

Our approach here is a specific instance of the more gen-
eral idea that dynamical phenomena in complex systems can be
understood by constructing a simplified version of the original sys-
tem that exhibits similar phenomena and is easier to analyze. For
example, star networks have been used to demonstrate the main fea-
tures of explosive synchronization (Gómez-Gardeñes et al., 2011),
while similar simplified models, including a four oscillator model,
have been used to study weak chimera states (Ashwin and Burylko,
2015) and blinking chimeras (Goldschmidt et al., 2019). Following
established terminology (Ashwin and Burylko, 2015), we call such a
simplified model a minimal model.

Note that a minimal model is not designed to be equivalent
to the full original system but to capture the dynamical features
of interest. For the role of inertia in the appearance of secondary
synchronized clusters, the minimal model we consider is a coupled
three-oscillator system. To create this minimal model, our starting
point is the observation that since all oscillators in Eq. (1) are con-
nected to each other, there is no topological effect and the only factor
that affects the synchronization process is the natural frequency dis-
tribution g(�). We thus consider a system where the oscillators
follow a discrete natural frequency distribution. That is, the N oscil-
lators are grouped into NG groups so that the ith group contains wiN
oscillators with natural frequency �i. Moreover, we assume that the
oscillators in the ith group are phase and frequency synchronized
with common phase θi and common frequency ωi.

Then, the dynamics for an oscillator in the ith group is given by

θ̇i = ωi,

mω̇i + Dωi = �i + K

NG∑

j=1

wj sin(θj − θi).

In terms of a second-order equation, we have

mθ̈i + Dθ̇i = �i + K

NG∑

j=1

wj sin(θj − θi). (13)

The last equation can be viewed as describing NG weighted oscil-
lators with wi being the weights. Thus, the original system of N
oscillators is replaced by a smaller system of NG weighted oscillators.

To demonstrate the effect of inertia to the formation of
secondary synchronized clusters we consider, as previously men-
tioned, the case of three-coupled oscillators and we assign weights
w0 � w1 > w2 and natural frequencies 0, �, and � + 1� with

� � 1�. Oscillator 0 is assigned the largest weight w0, describing
the main synchronized cluster, and oscillators 1 and 2 are assigned
smaller weights w1 and w2 but closer natural frequencies, describ-
ing two small synchronized clusters away from the main one [see
Fig. 8(a)]. The benefit of considering such a minimal model is that
the effect of inertia can be analyzed theoretically.

Introducing the phase differences ϕ1 = θ1 − θ0, ϕ2 = θ2 − θ1,
we rewrite the dynamics as

mϕ̈1 + Dϕ̇1 = � − K [A sin(ϕ1) − w2 sin(ϕ2) + w2 sin(ϕ1 + ϕ2)] ,

(14a)

mϕ̈2 + Dϕ̇2 = 1� − K [1A sin(ϕ2) − w0 sin(ϕ1) + w0 sin(ϕ1 +ϕ2)],
(14b)

where A = w0 + w1 is the combined weight of oscillators 0 and 1,
and 1A = w2 + w3 � A is the combined weight of oscillators 1
and 2.

Even though the system in Eq. (14) has various dynamical
properties, we are only interested in the synchronization of each
pair of oscillators. Since A � w2, we can ignore in Eq. (14a) the
perturbations from ϕ2 and obtain the equation

mϕ̈1 + Dϕ̇1 = � − KA sin(ϕ1), (15)

which describes the synchronization between oscillators 0 and 1.
The dynamics in Eq. (15) are the same as the dynamics of a single
second-order oscillator (Levi et al., 1978 and Gao and Efstathiou,
2018). The synchronization condition, ϕ̇1 = 0, can be written as

�

KA bP

(
1√

KµA

) =
µ�

β(KµA)
≤ 1, (16)

where we have defined

β(x) = x bP

(
1

√
x

)
,

and we recall that µ = m/D2 is the reduced mass.
The boundary function bP(x) equals either bS(x) or bL(x)

≡ 1 in the forward and backward processes, respectively. In both
cases, the function β(x) is invertible—see Fig. 6 for the graph of
β−1(x)—and, therefore, we can solve Eq. (16) to determine the
critical value K1 for the synchronization of oscillators 0 and 1,
given by

K1 =
β−1(µ�)

µA
. (17)

For K < K1, the system converges to a stable limit cycle with
ϕ̇1 u ω1 = �/D. Then, for the synchronization of the oscillators 1
and 2, we have

mϕ̈2 + Dϕ̇2 = 1� − K 1A sin(ϕ2)

+ Kw0 [sin(ϕ2 + ω1t) − sin(ω1t)] .

Since � is large, we can average the fast periodic perturbation from
ϕ1 over time and obtain the averaged dynamics of ϕ2 as

mϕ̈2 + Dϕ̇2 = 1� − K 1A sin(ϕ2). (18)
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FIG. 6. The graph of β−1(x). The red curve represents the backward process,
i.e., b = bL, where β−1(x) = x. The blue curve represents the forward process,
i.e., b = bS.

Note that the last equation has the same form as Eq. (15) and,
therefore, we can define a critical value

K2 =
β−1(µ1�)

µ1A
(19)

for the synchronization of oscillators 1 and 2.
Since in the backward process the function bL(x) ≡ 1 is con-

stant, we find β−1(x) = x, and the transition process is independent
of µ. In particular, the critical values of K are

K1 =
�

A
, K2 =

1�

1A
.

In the forward process, with nonlinear boundary function bS(x),
Eq. (12), the synchronization process depends on the value of µ. We
define

C(µ) =
K1

K2

=
1A

A

β−1(µ�)

β−1(µ1�)
. (20)

If C(µ) < 1, oscillator 1 will first merge with oscillator 0 at K1 < K2

while if C(µ) > 1 oscillator 1 will first merge with oscillator 2 at
K2 < K1. The level sets C(µ) = 1 in the (�, 1�/�) plane for fixed
1A/A = 0.1 and different values of µ are shown in Fig. 7. We
observe that as µ increases, the region in which we theoretically
predict that oscillators 1 and 2 will synchronize first also increases.

To better understand this phenomenon, we contrast the cases
of small µ and large µ. Note that for small x, we have β−1(x) = x,

FIG. 7. Curves C(µ) = 1 for 1A/A = 0.1 and µ = 1, 2, 5, 10. The region
C(µ) > 1 corresponding to the synchronization of oscillators 1 and 2 lies below
each curve.

while for sufficiently large x > 0.74, we have β−1(x) u 0.48
+ 0.62x2, cf. the graph of β−1(x) in Fig. 6. For x � 1, we approxi-
mate β−1(x) ∼ x2. This implies that for small µ, we have

Csmall µ =
K1

K2

=
�

1�

1A

A
.

However, for large µ such that µ� � µ1� � 1, we have

Clarge µ =
K1

K2

u

(
�

1�

)2
1A

A
=

�

1�
Csmall µ.

Since �/1� � 1, we conclude that even if for small µ, we have
Csmall µ < 1 and oscillator 1 first merges with oscillator 0 (i.e., it joins
the main cluster); for large µ, the process can be changed. In partic-
ular, if �/1� is large enough so that Clarge µ > 1, then oscillator 1
will merge with oscillator 2 to form a secondary cluster.

We conclude that for larger inertias, the oscillators are more
likely to synchronize among ones with closer natural frequencies
rather than with the main synchronized cluster. Consequently, we
observe the appearance of additional synchronized clusters in the
forward processes with sufficient large inertias.

In Fig. 8, we confirm through simulations the results of the
theoretical analysis. We consider the forward process for three oscil-
lators with �0 = 0, �1 = 1, �2 = 1.15 and w0 = 0.95, w1 = 0.05,
w2 = 0.05 [see Fig. 8(a)]. Therefore, 1�/� = 0.15 and 1A/A
= 0.1. Then, Csmall µ = 2/3 < 1 and this implies that for small

FIG. 8. (a) Weights wi for oscillators with natural frequency �i ; (b) synchronization in the forward process with m = 2; and (c) synchronization in the forward process with
m = 5.
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µ = m/D2, oscillator 1 will first merge with oscillator 0 as shown
in Fig. 8(b) where m = µ = 2. However, for large µ, we have Clarge

µ = 40/9 > 1 and this implies that for large µ, oscillator 1 will first
merge with oscillator 2 as shown in Fig. 8(c) where m = µ = 5. Note
here that even though oscillators 1 and 2 synchronize, such synchro-
nization is not perfect and it is possible for larger K to have oscillator
1 split off from the pair and synchronize with oscillator 0 as shown in
Fig. 8(c). This does not contradict our theoretical analysis where we
analyzed only the question of which oscillator pair will synchronize
first and did not consider the full dynamics of the system.

Note that, as a generalization of these three-coupled oscillators,
one can also consider three groups of oscillators as a limiting case of
multimodal frequency distributions. This is beyond the scope of this
paper and we refer to Acebrón and Bonilla (1998) and Acebrón et al.
(2001).

V. DISCUSSION

In this paper, we analyzed the appearance of non-stationary
states in the synchronization process of second-order oscillators and
the role of inertia. The numerical results in Sec. II demonstrate that
the role of inertia is to impede the formation of large synchro-
nized clusters and to facilitate the creation of smaller, secondary,
synchronized clusters. These secondary clusters, in turn, manifest
through the macroscopic order parameter either as oscillations of
the coherence or as standing waves.

In Sec. III, following the approach of Engelbrecht and Mirollo
(2012), we considered the problem of an oscillator whose dynam-
ics is determined by a mean field with oscillatory or standing wave
coherence. We showed both numerically and theoretically that in
these cases the graph of the rotation number as a function of the
natural frequency has plateaus that correspond to synchronized
clusters. Moreover, we numerically showed that the mean field
description is consistent with the numerical results.

Finally, in Sec. IV, we considered a simplified minimal model
with only three oscillators and we used it to understand how inertia
affects synchronization. Our findings in this minimal model agree
with the numerical results of Sec. II and reveal that large inertias can
lead to the mutual synchronization of oscillators far from the main
synchronized cluster.

One can see the results in Sec. III as one side of the self-
consistent method. Starting with a periodic mean field, we analyzed
the types of dynamics that oscillators can exhibit in this case. What is
missing is a full self-consistent description of oscillatory and stand-
ing wave states. Such a self-consistent description of non-stationary
states remains elusive even for standard Kuramoto oscillators and
would be a major step forward in understanding non-stationary
states in coupled oscillators.
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APPENDIX: BIMODAL NATURAL FREQUENCY

DISTRIBUTIONS

In this appendix, we consider the effect of the distribution
of natural frequencies to the formation of secondary synchronized
clusters. In particular, instead of the unimodal distribution g1(�)

that we introduced in Sec. II, we consider here two bimodal natural
frequency distributions.

The first bimodal distribution, having well separated modes, is
given by

g2(�) =
1

2
G(�; 3

2
, 1

2
) +

1

2
G(�; − 3

2
, 1

2
). (A1)

The second bimodal distribution is given by

g3(�) =
1

2
G(�; 1, 0.7) +

1

2
G(�; −1, 0.7). (A2)

Here, the two modes are closer together and the separation between
them is not as pronounced as for g2(�) (see Fig. 9).

1. Phenomenology

The results of the numerical simulations for the forward and
backward processes and for inertias m = 2, m = 5, and m = 10 for
the distribution g2(�) are shown in Fig. 10.

For m = 2, we observe in Fig. 10(a) that at K u 2.9 in the for-
ward process, the mean coherence increases discontinuously but it is
also combined with strong oscillations from r = 0 to some maximal
value close to 1. Figure 10(b) shows that this is a result of the for-
mation of two synchronized clusters at the two peaks of the natural
frequency distribution. The corresponding state is shown in more
detail in Fig. 11 for K = 5.0. We observe in Fig. 11(a) that the com-
plex order parameter r eiφ combines a fast radial motion that passes
very close to the origin with a slow angular precession. Plotting only
the value of r as a function of t, we obtain the behavior shown in
Fig. 11(b). We call such non-stationary state, a standing wave state.

In Fig. 11(c), we observe the existence of the two large syn-
chronized clusters. The existence of these clusters also explains the
particular behavior of the complex order parameter. In particular,
and to simplify the discussion, assume that N/2 oscillators rotate as

FIG. 9. Natural frequency distributions used in the numerical simulations in Sec. II
and in the Appendix.
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FIG. 10. Results of the numerical simulations for the forward and backward processes for N = 10 000 oscillators and bimodal natural frequency distribution g2(�) with
clearly separated modes. The inertias considered in these pictures are m = 2 (top row), m = 5 (middle row), and m = 10 (bottom row). The description of the panels at the
left and right sides is as in Fig. 1.

θi = ωt while the other N/2 oscillators rotate as θi = −ωt. Then, the
complex order parameter is

r eiφ =
1

2
(eiωt + e−iωt) = cos ωt, (A3)

which agrees with our definition of a standing wave state. Note that
in Olmi and Torcini (2016), a standing wave state is defined through
the existence of two synchronized clusters with opposite frequencies.

As K further increases, we observe in Fig. 10(a) that the two
synchronized clusters first shed some oscillators and then they
merge and the system reaches a coherent stationary state.

In the backward process, we observe in Fig. 10(a) the appear-
ance of standing waves when the coupling strength drops below

K u 3.4. This contrasts with the unimodal case where there are no
non-stationary states in the backward process.

For m = 5, we observe in Figs. 10(c) and 10(d) that one of the
synchronized clusters associated with the two peaks of the natural
frequency distribution is formed first and this induces a discontin-
uous increase of the coherence but no strong oscillatory behavior.
This state has been called a traveling wave state in Olmi and Torcini
(2016). When the synchronized cluster associated with the second
peak is formed, then we obtain a standing wave state, which persists
for K as large as 10. Again, we observe the formation of standing
waves in the backward process.

Finally, for m = 10, we observe in Figs. 10(e) and 10(f), a
much more complicated process of cluster formation where the
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FIG. 11. States obtained from the forward process for the bimodal distribution g2(�) with clearly separated modes. Top row: a standing wave state for m = 2 and K = 5.0;
bottom row: a second standing wave state for m = 10 and K = 8.0. The description of the panels is as in Fig. 2.

synchronized clusters absorb but also shed oscillators. Note, in par-
ticular, the appearance of several secondary synchronized clusters
except the two main synchronized clusters associated with the two
peaks of the natural frequency distribution. One state for K = 8.0
is depicted in Figs. 11(d)–11(f). Figures 11(d) and 11(e) are similar
to Figs. 11(a) and 11(b), respectively. However, in Fig. 11(f) and in
agreement with Fig. 10(f), we clearly see the two main synchronized
clusters associated with the two peaks of the natural frequency distri-
bution together with some smaller secondary synchronized clusters.
We also note the appearance of a traveling wave state from K u 3.6
to K u 3.9. In the backward process, we again have the appearance
of standing wave states as the coupling strength gets smaller.

The last distribution we consider is the bimodal distribution
g3(�) with strongly overlapping modes. We expect that in this case,
the behavior of the system will be a mixture of the behaviors for the
unimodal case in Sec. II and the bimodal distribution g2(�) in the
present section. The results of the numerical simulations for the for-
ward and backward processes and for inertias m = 2, m = 5, and
m = 10 are shown in Fig. 12.

For m = 2, we observe in Figs. 12(a) and 12(b) that the sys-
tem behaves very similarly to the corresponding unimodal case with
m = 2.

For the intermediate value m = 5, we observe a much more
complicated synchronization scenario with the formation of several
clusters and the appearance of oscillatory states. In this case, the
behavior is more similar to the corresponding unimodal case since
we do not observe standing waves. However, if we look more closely

at such an oscillatory state, Fig. 13(a), we observe that the preces-
sion of the order parameter is faster compared to the corresponding
oscillatory state in the unimodal case in Fig. 2(d). Moreover, the syn-
chronized clusters in the two cases have different structures as can
be observed by comparing Figs. 13(c) to 2(f). Note also that, simi-
lar to the unimodal case, non-stationary states do not appear in the
backward process.

Finally, for m = 10, we observe the creation of several small
synchronized clusters, in agreement with our previous observa-
tions for large inertias. We observe that in this case, the bimodality
becomes more apparent and this indicates that inertia here plays the
role of enhancing the effect of bimodality. In particular, we observe
the appearance of standing waves for coupling strength larger than
K u 5. In this respect, this case should be compared to the cor-
responding case for the bimodal distribution g2(�) in Figs. 10(e)
and 10(f). However, non-stationary states do not appear in the
backward process in contrast to all the numerical simulations for
g2(�). The standing wave state for m = 10 and K = 8 is shown
in Figs. 13(d)–13(f) where we observe a more complicated pattern
compared to the standing wave states in Fig. 11. In summary, the
numerical results for bimodal distributions confirm that the role of
inertia is to support the formation of secondary synchronized clus-
ters. Moreover, the degree of the overlap of the two modes in the
bimodal distribution controls the type of non-stationary states that
appear. Small overlap favors the formation of standing wave states
while large overlap, bringing the distribution closer to the unimodal
case, favors oscillatory states.
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FIG. 12. Results of the numerical simulations for the forward and backward processes for N = 10 000 oscillators and bimodal natural frequency distribution g3(�) with
strongly overlapping modes. The inertias considered in these pictures are m = 2 (top row), m = 5 (middle row), and m = 10 (bottom row). The description of the panels at
the left and right sides is as in Fig. 1.

2. Standing waves

We now apply a similar analysis as in Sec. III A to standing
wave states. We are assuming that r eiφ = εf(t) ei(�rt+φ0) where, as
before, f(t) has zero average and is periodic with period T. In this
case, the mean field equations become

θ̇ = ω, (A4a)

mω̇ + Dω = D 1� − Kεf(t) sin(θ), (A4b)

where 1� = (�/D) − �r.
For ε = 0, the system has a stable limit cycle L given by

ω = 1� and the rotation number of the corresponding Poincaré
map is rot(F) = 1�. As ε starts increasing the limit cycle persists as

an invariant curve Lε . However, for larger values of ε, the dynamics
on Lε will give rise to fixed points when the inertia is large enough
(see Fig. 14), while there may also appear stable features outside the
invariant curve.

The graphs rot(F) vs 1� in Fig. 14 show the appearance of two
plateaus at 1� = ±1 when we take r(t) = ε sin t modeling a stand-
ing wave state. Note that the existence of these plateaus is consistent
with having a standing wave state, in the sense that if we could fix the
observed dynamics and populate the plateaus with oscillators drawn
from a bimodal distribution g(�) with peaks at � = ±1, then the
resulting order parameter would behave as a standing wave state.
This partially explains why the standing wave states appear in the
case of bimodal distributions, especially when the modes are well
separated.
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FIG. 13. States obtained from the forward process for the bimodal distribution g3(�) with strongly overlapping modes. Top row: oscillatory state for m = 5 and K = 8.0;
bottom row: standing wave state for m = 10 and K = 8.0. The description of the panels is as in Fig. 2.

FIG. 14. Rotation number rot(F) as function of 1� = (�/D) − �r for Eq. (9) with standing wave r(t) = ε sin t. Top row: m = 2; bottom row: m = 5. The value of ε
increases from left to right taking the values ε = 0.1, 0.25, 0.4, 0.6—note that for ε = 0, we have rot(F) = 1�. In all cases, D = 1 and K = 4.5. Bistable regions are
colored light gray, and multistable regions (three or more stable features) are colored dark gray. In panels (c) and (d), there are small bi- or multi-stable regions that we have
not colored.
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An alternative way of understanding the synchronization pro-
cess and the formation of secondary synchronized clusters in the
case of bimodal distributions with well separated modes is by con-
sidering the populations of oscillators around each peak of the
distribution as separate systems with a weak interaction among
them. Then, for small inertias, each of the populations will form a
synchronized cluster and the complex order parameters for the two
clusters will rotate in the opposite sense on the complex plane giving
rise to the standing wave state. This can happen either in the forward
or in the backward process and for small or large inertias. However,
for large inertias in the forward process, each of the two populations
will give rise to secondary clusters complicating the synchronization
scenario. In all cases, as K increases and the interaction between the
two populations becomes stronger the system will eventually reach
a coherent stationary state.
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